Содержание
Статья сфокусирована на объяснении понятий и принципов, а также важных и интересных возможностях UEFI. Более детально сам процесс установки и настройки загрузки Ubuntu в UEFI режиме описан в этой статье или в этой.
Практически все современные компьютеры оснащены системной прошивкой позволяющей загрузиться через UEFI. На более старых компьютерах за загрузку отвечал BIOS. В чем разница и как с этим всем жить - давайте разберемся.
BIOS
Старый добрый BIOS отвечает за первичное тестирование (POST), инициализацию практически всего аппаратного обеспечения компьютера и за инициализацию загрузки ОС с дискового носителя (хотя сегодня уже не все носители имеют в своей конструкции диск ). Собственно вся процедура инициализации загрузки ОС заключалась в двух шагах:
- по настройкам BIOS найти устройство (диск) с которого надо загрузиться.
- считать в память MBR, т.е. первый сектор (512 байт) диска и запустить находящийся там код на исполнение.
За все остальное (даже за работу с таблицей разделов, которая располагается в конце MBR) отвечает тот самый маленький код, который расположен в первых 446 байтах MBR.
Проблемой BIOS принято считать то, что много работы он делает зря (чем затягивает процесс загрузки системы). Практически всю его работу по инициализации и поддержке оборудования компьютера все современные ОС попросту игнорируют и повторно инициализируют и далее работают через свои драйвера. Все, что дает BIOS, было реально востребовано только в ранних версиях DOS…
Другой проблемой являются ограничения, которые установлены для поддержки BIOS: это 16-разрядный реальный режим работы процессора с набором команд i8086, 1Мб адресуемого пространства памяти и периферия (клавиатура, видео адаптер, контроллер прямого доступа в память) совместимая с IBM AT. На сегодняшний день, требовать от 64-х разрядного многоядерного, многопоточного процессора совместимости с одноядерным и однопоточным 16-разрядным i8086 - уже немного смешно, а требование совместимости по периферии с IBM PC-AT(компьютер 1984-го года выпуска) уже даже не смешно, а очень грустно.
(U)EFI
Идеи отказаться от всего того ненужного, что делает BIOS, снять архаичные ограничения BIOS и сделать процесс инициализации и загрузки более гибким возникали уже очень давно, и различные попытки сделать это предпринимались, но IT-индустрия реально созрела к принятию нового общего стандарта загрузки персональных компьютеров только в начале этого века. В 2005 был создан консорциуму UEFI Forum, которому INTEL передал свою наработки по проекту Intel Boot Initiative (позже переименованному в EFI - Extensible Firmware Interface), начатому еще середине 90-х. Помимо Intel в консорциум вошли AMD, Apple, IBM, Microsoft и многие другие крупные IT-компании. Вместе с созданием консорциума спецификация EFI была переименована в UEFI (Unified Extensible Firmware Interface)1).
Основные концепции положенные в основу UEFI - «минималистичность», «модульность» и поддержка разных процессоров. Прошивка UEFI может быть собрана под 32-битный или 64-битный процессоры Intel, 32- или 64-битный процессор ARM, а также для процессоров Intel Itanium. Кроме того UEFI имеет собственный менеджер загрузки и умеет работать с файловыми системами на диске (по умолчанию только FAT32), а также умеет загружать драйверы для поддержки различного оборудования и любых файловых систем.
После включения компьютера и проведения первичного теста оборудования (на этом этапе разницы с BIOS нет) инициализируются только те подсистемы, которые необходимые для загрузки.
В некоторых режимах загрузки, которые обычно называют Fast-boot (или Fast-Startup), даже клавиатура может оставаться не инициализированной, пока не загрузится ОС. Некоторые настройки Fast-boot могут отключать работу со всеми USB устройствами и не будет возможности даже выбрать с чего грузиться компьютеру, ведь клавиатура не работает до тех пор, пока не загрузится ОС.
Причем, в отличии от BIOS, все компоненты которого записаны в постоянную (флеш) память, UEFI может хранить часть своего кода на диске - в специальном разделе ESP2). Это позволяет легко расширять, менять и обновлять код поддерживающий различные устройства компьютера без необходимости перепрограммировать постоянное ЗУ компьютера. А кроме драйверов для поддержки устройств на ESP разделе может хранится и поддержка протоколов, утилиты и даже собственная EFI-оболочка (shell), из-под которой можно запускать собственные EFI-приложения. Т.е. UEFI по сути - маленькая ОС (или псевдо-ОС). При этом загрузчик операционной системы становится обычным приложением, которое исполняется в окружении, предоставляемом псевдо-ОС UEFI. Подробнее о EFS разделе мы поговорим в главе ESP раздел.
UEFI реализует свой менеджер загрузки, он поддерживает мульти-загрузку: позволяет выбирать загрузку из нескольких ОС и/или утилит. Загрузчик ОС - это просто efi-приложение, которое хранится на ESP разделе. В ESP может храниться много приложений, и пункты меню загрузки могут ссылаться каждый на свое приложение (или на одно, но с передачей разных параметров). Кроме того, UEFI поддерживает ассоциацию нажатия клавиш с пунктами загрузки (выбор пункта загрузки осуществляется в зависимости от того какая нажата клавиша в момент загрузки). Т.о. UEFI берет на себя большую часть задач, которые раньше могли решать только загрузчики ОС (типа GRUB). Более подробно мы поговорим о менеджере загрузки UEFI в разделе Менеджер загрузки UEFI
Архитектура UEFI позволяет также загрузить драйвера устройств (необходимые для работы ОС и для процедуры загрузки). Да и само ядро ОС можно загрузить (по крайней мере ядро Linux, собранное с опцией UEFISTUB) непосредственно из UEFI (т.е. устранить загрузчик из процесса загрузки). Такую возможность мы разберем более детально чуть позже в разделе Загрузка ядра Linux непосредственно из UEFI.
Как и в случае с BIOS, UEFI - это стандарт, практической реализацией которого занимаются разные поставщики решений. Поэтому в реализации стандарта UEFI в прошивках разных поставщиков могут значительно отличаться (как визуально так и функциональным наполнением). Могут встречаться сильно урезанные по функционалу реализации (чаще в компьютерах выпущенных в 2000-х годах). Но базовые принципы работы UEFI в процессе загрузки различаться сильно не должны (он был определен и зафиксирован в самых ранних стандартах UEFI). Интерфейсы утилиты настройки могут сильно различаться, но значение имеет не способ оформления интерфейса, а те настройки, которые доступны для изменения через этот интерфейс.
Совместимость
Само собой, современные прошивки умеют эмулировать работу BIOS. Отвечает за совместимость с BIOS модуль CSM (Compatibility Support Module иногда он еще называется Legasy support). Когда CSM включен и при загрузке загрузиться в UEFI не удалось, то CSM пытается найти загрузчик ОС в первом секторе диска (MBR) или в специальном служебном разделе (при GPT разбивке диска). Если код загрузчика найден, то CSM считает, что установлена ОС, требующая поддержки режима BIOS, и, прежде чем загрузить и запустить код из MBR, CSM проделывает все те же шаги инициализации оборудования, что предусмотрены для BIOS.
Если вы планируете использовать только загрузку в варианте UEFI, то работу этого модуля лучше запретить в системной утилите вашей материнской платы (Firmware setup utility). Кроме того, загрузка в режиме SecureBoot (о ней будет рассказано ниже) явно требует, что бы работа модуля CSM была запрещена.
ESP раздел
Отдельно стоит рассмотреть служебный раздел UEFI. Раздел обязательно должен иметь специальный идентификатор UUID = C12A7328-F81F-11D2-BA4B-00A0C93EC93B (или тип EF если он создан на диске с таблицей разделов в MBR). По стандарту этот раздел должен иметь файловую систему FAT32 (в принципе стандарт допускает использование других ФС, но на практике это не распространено). Предусмотренная в стандарте структура каталогов довольно проста.
- В корне системного раздела могут располагаться системные утилиты (например тот же шелл-интерпретатор).
- В каталогах EFI\<Поставщик>3) должны лежать загрузчики ОС указанного поставщика.
- Если у UEFI нет явного указания какой загрузчик загружать, то он загружает файл EFI\BOOT\BOOTx64.EFI (…x32.EFI для 32-х битных платформ).
При установке UBUNTU (с загрузкой через UEFI) служебный раздел ESP монтируется в /boot/efi. И на ESP разделе создается каталог EFI\ubuntu в котором размещается загрузчик4) GRUB и/или Shim (о них - чуть позже).
MBR и GPT
Еще одно «новшество» в индустрии относится к таблице разделов диска.
Во времена IBM-PC/AT и BIOS таблица разделов размещалась в первом секторе на диске, т.е. в MBR (Master Boot Record). В MBR хранится и исполняемый код загрузчика ОС и таблица разделов. Т.к. в 5125) байт много не запихнешь, то таблица разделов была рассчитана только на 4 раздела. Изначальное ограничение на 4 раздела позже было обойдено через внедрение расширенного раздела - внутри него можно было создать множество логических разделов 6).
Другой недостаток7): на указатели начала и конца раздела было зарезервировано 32 бита, что позволяло адресовать 2 терабайта (что в те давние времена казалось просто астрономически много ).
Однако уже к началу 2010-х на рынке стали появляться диски более 2Тб. Но к этому времени уже набрал популярность стандарт таблицы разделов GPT (GUID Partition Table). В GPT число разделов практически не ограничено (по умолчанию 128, но можно и больше) и установлена новая планка для размера диска: 9,4 ЗБ, т.е 9,4 × 10^21 байт (на сегодня этот размер вновь выглядит астрономически большим… )
К чему я упомянул про таблицы разбиения дисков? А к тому, что, несмотря на то, что первоначально UEFI планировалось использовать только с GPT, а BIOS умел работать с MBR (вернее код в MBR работает с таблицей разделов расположенной в конце MBR), но в реальной жизни и BIOS (вернее сказать CSM) научили понимать GPT, и для UEFI предусмотрели использование таблицы разделов из MBR.
Получившаяся в результате «солянка» (из 4-х допустимых вариантов: UEFI + MBR, UEFI + GPT, BIOS/CSM + MBR и BIOS/CSM + GPT) создает некоторую путаницу и недопонимание. Давайте попробуем во всем этом разобраться более детально.
Что нужно для того что бы ОС грузилась через BIOS?
В первую очередь, для загрузки через BIOS, в утилите настройки вашего компьютера должна быть разрешена работа модуля CSM. Само собой, режим SecureBoot (о нем рассказано чуть ниже) в таком варианте организовать невозможно в принципе.
Если разбивка диска - c таблицей разделов в MBR (вариант «BIOS/CSM + MBR»), то ничего дополнительно не нужно (это сочетание собственно и есть оригинальная конфигурация для варианта загрузки через BIOS).
А вот если у вас диск размечен через GPT (вариант «BIOS/SCM + GPT»), то возникают некоторые сложности.
В первую очередь: не совсем ясно - куда разместить код, который ранее размещался в MBR. Да, в GPT первый блок размером в 512 байт зарезервирован и в нем даже есть защитная версия таблицы разделов (в формате принятом для MBR). В защитной таблице разделов записан единственный раздел размером на все адресуемое пространство диска8) и с типом EE. Само собой, с единственной фейковой записью в таблице разделов никакой код в MBR не сможет корректно отработать процесс загрузки9).
Еще одно проблемное место возникает когда загрузчик использует для размещения своего кода сектора на первом треке диска за MBR (к примеру так поступает GRUB). В GPT на этом месте уже идут служебные записи (заголовок таблицы разделов и сами записи о разделах).
Для решения обоих этих проблем предусмотрен специальный бинарный (он не форматируется ни в какую ФС) раздел BIOS-Boot (Тип = EF02 или UUID = 21686148-6449-6E6F-744E-656564454649). Установщик ОС может прописать на этот раздел весь тот код, который ранее размещался в MBR и на незанятом пространстве за MBR. Этот раздел должен иметь установленный флаг boot. Размер этого раздела может быть совсем маленьким, ведь MBR - это всего 512 байт, а размер неиспользуемого пространства за MBR, составляет всего 31Кb или 1023,5Кb10). Однако, некоторые современные загрузчики требуют раздел BIOS-Boot размером в 10-30Мb.
В процессе загрузки CSM модуль (эмулирующий работу BIOS) отвечает за то, что находит в GPT раздел BIOS-Boot, загружает первые 512 байт с этого раздела, и передает управление загруженному коду. За дальнейший процесс загрузки отвечает этот код, а CSM берет на себя задачу эмулировать обращение к секторам диска за MBR (вместо этих секторов производится подстановка секторов из раздела BIOS-Boot).
Пожалуй вот на этом и закончим обсуждать CSM и BIOS, все дальнейшее будет относится только к UEFI.
Что нужно для установки ОС, что бы она грузилась через UEFI?
На самом деле все не так сложно как кажется. Как уже было сказано UEFI требует специального раздела ESP (с файловой системой FAT32 и флагами boot и esp). И, несмотря на то, что для этого раздела был предусмотрен специальный длинный идентификатор (UUID = C12A7328-F81F-11D2-BA4B-00A0C93EC93B) для GPT, который в таблицу разделов MBR ну никак не запихнешь, этому разделу дали еще и короткий идентификатор (EF), который можно «впихнуть» в таблицу разделов в MBR. Т.е. ESP раздел можно создать и на диске с GPT и на диске с таблицей разделов в MBR (однако такой вариант поддерживает не любая ОС).
Т.о. при установке системы, помимо создания нужных для работы ОС разделов, нужно создать специальный раздел ESP:
- для варианта «UEFI + MBR» : c типом EF
- для варианта «UEFI + GPT» : c типом EF00 и UUID = C12A7328-F81F-11D2-BA4B-00A0C93EC93B
Этот раздел должен быть отформатирован в FAT32 и иметь установленные флаги boot и esp. Размер раздела можно выбрать небольшим 200-300Мб (занято там будет, скорее всего, гораздо меньше, но делать его совсем маленьким, при современных объемах дисков - просто бессмысленно).
Если ESP раздел создается из установщика Ubuntu, то нужный формат, точку монтирования и необходимые флаги установщик сделает сам: нужно только выбрать тип раздела «EFI Boot» и задать его размер.
Если на компьютере уже стоит ОС загружающаяся через UEFI, то ESP раздел уже должен быть на диске и новый ESP создавать не нужно. В установщике Ubuntu надо только убедиться, что этот раздел используется как «EFI Boot». Более того, если создать несколько разделов ESP (на одном диске), то некоторые прошивки UEFI могут «окриветь» из-за такого неожиданного разнообразия. Общее правило - на диске должен быть только один раздел ESP. На разных устройствах ESP разделов может быть несколько - это вполне штатная ситуация для UEFI.
Для загрузки через UEFI модуль CSM не нужен, и, если все установленные на компьютере ОС грузятся через UEFI, то CSM лучше отключить. А вот если вы организуете загрузку в режиме SecureBoot, то CSM модуль отключить просто необходимо: без этого, обычно, просто не включить режим SecureBoot или включение SecureBoot автоматически запрещает работу CSM.
Менеджер загрузки UEFI
Кроме кода отвечающего за первичную инициализацию системы UEFI имеет свой менеджер загрузки. Работу менеджера загрузки задают переменные UEFI, хранящиеся в энергонезависимой памяти NVRAM11).
Переменные, которые задают работу менеджера загрузки это:
- Driver####
- DriverOrder
- SysPrep####
- SysPrepOrder
- Boot####
- BootOrder
- OsRecovery####
- PlatformRecovery####
- BootNext
, где #### - шестнадцатеричный номер записи.
Переменные Driver#### инициализируют загрузку UEFI драйверов. Переменная DriverOrder определяет последовательность загрузки драйверов.
Драйвера остаются в памяти после своей инициализации. Однако загруженные драйвера сразу не связываются с устройствами, которые они обслуживают. Процесс такого связывания необходимо инициализировать отдельно. Но нужно отметить, что происходит не просто связывание загруженных драйверов, а повторное связывание, т.к. некоторые драйвера уже были связаны со своими устройствами в процессе первичной инициализации системы. За запуск процесса инициализации отвечает флаг LOAD_OPTION_FORCE_RECONNECT, который можно установить в поле атрибутов загрузочной записи Driver####. Если хоть у одного из загруженных драйверов этот флаг установлен, то после окончания загрузки всех драйверов менеджер загрузки UEFI инициализирует процедуру пере-связывания всех драйверов и устройств.
Переменные SysPrep#### инициализируют загрузку системных утилит. Переменная SysPrepOrder определяет последовательность утилит. Системных утилита должна выполнить свои действия и вернуть управление менеджеру загрузки UEFI. Утилиты не остаются в памяти, если нужен резидентный код, то его нужно загружать как Driver####.
Переменные Boot#### отвечают за загрузку загрузчиков ОС. Переменная BootOrder определяет приоритет загрузки загрузчиков ОС. Загрузчик обязан определить возможность загрузки ОС и принять решение - будет он загружать ОС или нет. Если ОС не будет загружаться, то загрузчик должен просто вернуть управление менеджеру загрузки UEFI. Если же ОС будет загружаться, то загрузчик должен уведомить об этом менеджера загрузки UEFI специальным вызовом. Этот вызов имеет принципиальное значение, т.к. те услуги которые UEFI обеспечивает для ОС гораздо уже и более ограничены чем те, которые доступны в процессе инициализации системы. И Именно для переключения режима услуг необходимо такое уведомление от загрузчика.
На работу менеджера загрузки влияют как переменные DriverOrder, SysPrepOrder и BootOrder, так и значение флага LOAD_OPTION_ACTIVE устанавливаемого в поле атрибутов загрузочной записи (Driver####, SysPrep#### или Boot####). Загрузочные записи с неактивным флагом LOAD_OPTION_ACTIVE игнорируются менеджером загрузки UEFI даже если эти записи указаны в переменной задающей порядок/приоритет (DriverOrder, SysPrepOrder или BootOrder). Также игнорируются записи с активным флагом LOAD_OPTION_ACTIVE, но не включенные в переменную задающую порядок/приоритет.
Менеджер загрузки UEFI в нормальном режиме работы сначала загружает все активные Driver#### упомянутые в DriverOrder и в том порядке, в котором они записаны в DriverOrder, затем загружает все активные SysPrep####, указанные в SysPrepOrder, в указанном там порядке, а после этого пытается загрузить активный загрузчик ОС (Boot####) в порядке указанном в BootOrder. А вот если ни одна из активных записей упомянутых BootOrder не смогла загрузить ОС (все вернули управление менеджеру загрузки UEFI), то запускается процесс восстановления.
Процесс восстановления настраивается переменными OsRecovery#### и PlatformRecovery####. Если эти переменные не заданы, то менеджер загрузки UEFI пытается произвести загрузку по умолчанию: загружается загрузчик хранящийся по пути \EFI\BOOT\BOOT{machine type short-name}.EFI, где {machine type short-name} - одно из:
- IA32 - для 32-х битной платформы c INTEL-подобным процессором
- x64 - для 64-х битной платформы c INTEL-подобным процессором
- IA64 - для 64-х битной платформы с INTEL Itanium процессором
- ARM - для 32-х битной платформы c ARM процессором
- AA64 - для 64-х битной платформы c ARM процессором
Если загрузка по умолчанию не прошла, то менеджер загрузки UEFI сдается и выводит сообщение о невозможности дальнейшей загрузки системы.
Если заданы OsRecovery#### и/или PlatformRecovery####, то сначала выполняются OsRecovery#### и после этого менеджер загрузки UEFI пробует снова загрузить одну из Boot#### указанных в BootOrder и пробует загрузку по умолчанию.
Если и после этого ни один загрузчик не начал загрузку ОС, то выполняются PlatformRecovery####, но после выполнения записей PlatformRecovery#### загрузка начинается сначала: с Driver####, затем SysPrep####, а только после этого пробует снова загрузить одну из Boot#### указанных в BootOrder и загрузку по умолчанию. И вот если уже и после этого не удалось запустить загрузку ОС, то менеджер загрузки UEFI сдается и выводит сообщение о невозможности дальнейшей загрузки системы.
Отдельно нужно упомянуть возможность манипуляции приоритетом загрузки ОС заданным в BootOrder. Если задана переменная BootNext (в ней указывается номер одной из записей Boot####, которая должна быть активной), то менеджер загрузки пробует сначала загрузить запись Boot#### указанную в BootNext, и только если загрузить ОС по этой записи не удалось, то менеджер загрузки переходит к загрузке в соответствии с BootOrder. При этом BootNext удаляется в любом случае.
Еще один способ изменения приоритета загрузки ОС - выбор записи Boot#### по нажатию кнопки на клавиатуре в процессе загрузки. Для реализации такого механизма нужно привязать кнопку к записи Boot####. И если кнопка будет нажата, то менеджер загрузки пробует сначала загрузить запись Boot#### привязанную к кнопке, и только если загрузить ОС по этой записи не удалось, то менеджер загрузки переходит к загрузке в соответствии с BootOrder.
Практически все функции и настройки менеджера загрузки UEFI позволяет настроить утилита efibootmgr (смотрите man efibootmgr что бы узнать как).
Вот такие серьезные возможности обеспечивает менеджер загрузки UEFI. Фактически в нем реализован весь функционал классических менеджеров загрузки ОС поддерживающих мультизагрузку (загрузку нескольких ос или нескольких версий одной ОС). Причем в вопросах восстановления функционал менеджера загрузки UEFI даже шире за счет того, что он реализуется в процессе инициализации системы.
Таким образом UEFI делает такие загрузчики (например GRUB) фактически ненужными. И ниже мы поговорим о том, как можно организовать загрузку ОС Linux из UEFI без дополнительных загрузчиков.
Secure Boot
Особого упоминания требует такая особенность UEFI как Secure Boot.
Как уже было сказано EFI раздел (ESP) находится на диске, к которому может быть организован доступ во время работы ОС. Это означает не только легкость в изменении загрузки и инициализации оборудования системы, но и то, что туда можно подсунуть заведомо зловредный код, который (О!!! УЖАС!!!) будет загружен еще ДО!! загрузки ОС. На самом деле, перепрограммировать микросхемы BIOS или подменить код в MBR из запущенной ОС тоже можно было, но на это практически никто раньше не обращал внимания .
Закрыть эту «ужасающую дыру» в безопасности и призван Secure Boot. Вот как он работает:
При программировании системной памяти UEFI загрузчика (firmware), производители, вместе с кодом, записывают и сертификаты (содержащие ключи), и при загрузке в режиме Secure Boot UEFI проверяет по этим ключам подписи у любого исполняемого кода, который он загружает из ESP раздела (подписи добавляются к коду). Если верификация не прошла - такому коду отказывают в запуске.
Однако, довольно быстро шумиха улеглась. Во-первых Secure Boot практически все производители компьютеров разрешают отключать (Microsoft позже насколько переформулировал свои требования: от оборудования сертифицированного под Windows 8 не требуется запрещать загрузку без Secure Boot, зато требуется сообщить загрузчику Windows 8, что загрузка была не в SecureBoot режиме, и уже самой Windows решать - грузится ей дальше или нет). А во-вторых, в рамках консорциума UEFI были предусмотрены интерфейсы для управления ключами. «Подсуетились» и Canonical, и RedHat вместе с фондом FSF (Free Software Foundation). Как результат всех этих мероприятий и событий - и GRUB, и другие загрузчики обзавелись методами загрузки в режиме Secure Boot, а кроме того, стали доступны утилиты по управлению ключами UEFI. Вы даже можете свой собственный код подписать своим собственным ключом, загрузить ключ в UEFI (утилитами из пакета efitools) и это позволит загружать ваш собственный код в Secure Boot режиме.
Чуть хуже дело обстоит с планшетами и телефонами с предустановленной Windows - в прошивках этих устройств SecureBoot может быть не отключаем, а иногда нет и управления ключами.
Все дистрибутивы Ubuntu поддерживающие загрузку через UEFI уже имеют в своем составе все необходимое для загрузки в Secure Boot режиме практически на любом компьютере. Но, если загрузка с установочной флешки или диска не идет, то Secure Boot следует отключить (конечно же Secure Boot - не единственная причина по которой может не происходить загрузка с установочной флешки или диска).
Ключи системы Secure Boot
На самом деле в энергонезависимой памяти компьютера (NVRAM) рассчитанного на работу с UEFI предусмотрено место не на один сертификат, более того, сертификаты хранятся в специально организованной, иерархической системе. Давайте рассмотри этот вопрос более детально, но начнем с того, что определим - что такое сами ключи, о которых мы тут говорим.
Ключи
Что же представляют собой эти ключи? На самом деле хранятся все ключи UEFI в сертификате - бинарном файле контейнере специального формата (специальное расширение стандарта x.509). Внутри сертификата могут содержаться открытый ключ, информация о владельце ключа, удостоверяющий ключ подписи и иная информация. Сами используемые ключи - это пары ключей (открытый/публичный и закрытый/секретный) сформированные алгоритмом RSA. UEFI стандарт рекомендует использовать ключи длинной 2048 bit.
Набор ключей системы SecureBoot
UEFI стандарт предусматривает следующие ключи (или списки ключей):
- PK (Platform Key) - Это основной (единственный) ключ системы. Часто это ключ производителя оборудования.
- KEK (Key Exchange Keys) - Ключ используемый для обмены ключами. Этих ключей может быть несколько.
- db (база разрешенных ключей) - А вот в этом списке и хранятся те самые ключи, которые используются для проверки подписи загружаемых UEFI программ.
- dbx (база отозванных ключей) - Здесь хранятся скомпрометированные ключи. Программный код подписанный такими ключами не будет загружаться и исполняться.
- dbt (база временных меток) - тут хранятся ключи с отметкой времени 12)) (оставим пока детальное рассмотрение вопроса использования этих ключей за рамками статьи).
- dbr (база ключей для восстановления) - тут хранятся ключи восстановления системы (оставим пока детальное рассмотрение вопроса использования этих ключей за рамками статьи).
Кроме того в NVRAM UEFI могут быть созданы кастомные списки ключей. Примером такого списка служит список ключей MOK (Mashine Owner Keys). MOK ключи используются не самим UEFI, а загрузчиком Shim. Shim (подписанный ключем из db) загружается как обычное UEFI приложение и сам проверяет подпись загружаемого им кода по ключам из MOK.
Состояния системы SecureBoot
Работа с ключем PK сильно зависит от состояния в котором находится UEFI. В спецификации UEFI v2.5 предусмотрено 4 состояния, на два из них наиболее важны, а еще два - служебные (они могут быть вовсе не реализованы в некоторых прошивках UEFI). Состояния определяются значениями глобальных переменных UEFI (хранящимися в NVRAM). При этом, в разных состояниях меняется не только значение переменных, но и возможность записать в эти переменные новое значение. Далее будет использоваться следующая нотация: <Переменная>=<значение>/[RO|RW], где признаки RO и RW говорят о доступности переменной для изменения (RO, от ReadOnly - только чтение; RW, от ReadWrite - чтение и запись).
- Setup - Режим настройки системы (SetupMode = 1/RO): PK - не определен, SecureBoot - не разрешен (SecureBoot = 0/RO), переход в состояние Audit разрешен (AuditMode == 0/RW), а переход в состояние Deployed запрещено (DeployedMode = 0/RO).
В этом режиме можно задать PK: он должен иметь удостоверяющую подпись своим собственным секретным ключем (т.е. он должен быть само-подписанным). При задании PK система сразу переходит состояние User.
Можно также перейти в состояние Audit, присвоив переменной AuditMode значение 1. - User - Рабочий режим (SetupMode = 0/RO): в этом режиме можно включить или выключить режим SecureBoot (SecureBoot=0/RW) или13) он включается автоматом, при переходе из состояния Setup (SecureBoot=1/RW), а может включаться и фиксироваться (SecureBoot=1/RO).
В этом режиме тоже можно поменять PK, но новый PK должен иметь удостоверяющую подпись секретным ключем текущего PK.
Из этого режима можно перейти в Audit (AuditMode = 0/RW) или в Deployed (DeployedMode == 0/RW). Так же можно удалить или очистить PK (реализация зависит от платформы) с автоматическим переходом в состояние Setup. - Audit - служебное состояние для проведения аудита системы - в этом режиме возможна загрузка любых модулей без проверки подписи, но о каждой загрузке создается запись в специальной таблице. При присвоении переменной AuditMode значения 1 (возможно в User и Setup) сразу происходят несколько действий: система переходит в состояние аналогичное состоянию Setup (SetupMode = 1/RO), отключается SecureBoot (SecureBoot = 0), текущий PK сбрасывается (очищается), DeployedMode = 0/RO.
Фактически это сброс системы SecureBoot в состояние Setup (что разрешает записать само-подписанный PK). Однако выход из этого режима иной чем из состояния Setup: При установке нового PK - состояние меняется на Deployed (AuditMode = 0/RO, DeployedMode = 1/RO, SetupMode = 0/RO). При этом в состоянии Deployed будет отключен SecureBoot. - Deployed - служебное состояние в котором запрещена любая работа с ключами, состояние SecureBoot тоже нельзя изменить (если включено - не отключить и наоборот). Как раз в этот режим переведены производителями UEFI на виндо-планшетах и виндо-смартфонах. Перевести в этот режим можно: из состояния User, присвоив глобальной переменной UEFI «DeployedMode» значение 1 или из состояния Audit, задав PK. Как вы правильно понимаете после этого и саму переменную «DeployedMode» уже будет не изменить.
Выход из этого режима возможен в User или Setup, а вот механизм выхода - зависит от реализации UEFI (Platform specific DeployedMode clear - как написано в спецификации). Т.е. либо какие-то шаманские действия (возможно и недокументированные) либо вовсе - никак (по крайней мере без аппаратного обнуления NVRAM).
KEK ключ может быть добавлен в состояниях Setup (без подписи или само-подписанный) и User (обязательно подписанный секретным ключем от PK).
С ключами в db* (db, dbx, dbt, dbr) - все значительно проще и одновременно сложнее: Т.к. существует огромное количество операционных систем и их различных версий, а также загрузчиков этих ОС, драйверов и утилит от разных поставщиков, то поставить (от производителя) систему сразу со всеми нужными ключами - просто нереально. То же касается и ключей, которые были скомпрометированы и ключей восстановления. Поэтому предусмотрен режим добавления этих ключей. При этом если система находится в состоянии Setup, то ключи в db* можно добавлять без подписей или само-подписанные, а если в User, то добавляемые ключи должны быть подписаны приватной ключем от одного из KEK ключей или от PK.
Причем в ключи в db (dbt) могут добавляться и автоматически (если это предусмотрено конкретной реализацией UEFI): когда подпись загружаемого модуля не может быть проверена, то могут быть предусмотрены механизмы (поиск в массиве на диске или интерактивное подтверждение от авторизованного пользователя), которые разрешат добавить публичный ключ от подписи (подпись содержит публичный ключ для своей проверки) в db (или dbt).
Собственные ключи
Так как все ключи/сертификаты UEFI (PK, KEK, db) построены на основе открытых стандартов, то и весь набор этих ключей можно сформировать самостоятельно. Далее рассмотрим как это можно сделать, а вот тут описано все тоже другим толковым автором.
Для работы нам потребуются утилита openssh (практически во всех дистрибутивах Linux эта утилита уже установлена) и утилиты из пакета efitools (доступна в репозиориях ubuntu14)).
Создание ключей
Для начала создадим наш тестовый ключ и само-подписанный сертификат:
$ openssl genrsa -out test-key.rsa 2048 $ openssl req -new -x509 -sha256 -subj '/CN=test-key' -key test-key.rsa -out test-cert.pem $ openssl x509 -in test-cert.pem -inform PEM -out test-cert.der -outform DER
Для дальнейших действий нам потребуется GUID для идентификации нашего ключа. Его очень просто сформировать через утилиту uuidgen, а для удобства новый GUID мы запишем в переменную.
$ guid=$(uuidgen) $ echo $guid c752155d-093f-4441-87c3-20e2352205ac
Создание UEFI ключей
Для того что бы установить наш ключ в базу ключей UEFI, нам потребуется специальны контейнер EFI_SIGNATURE_LIST, в котором будет задана переменная EFI_VARIABLE_AUTHENTICATION_2. Для упрощения, ключи в контейнере будут само-подписанными.
Сначала мы создаем контейнер EFI_SIGNATURE_LIST содержащий сертификат:
$ sbsiglist --owner $guid --type x509 --output test-cert.der.siglist test-cert.der
Далее создадим подписанные ключи для последующей загрузки в энергонезависимую память UEFI. Наши файлы будут содержать сертификат с префиксом в виде EFI_VARIABLE_AUTHENTICATION_2 описателя. Описатель будет подписывать ключ, и содержать название переменной и другие атрибуты. Т.к. в файл будет включено название переменной (PK, KEK and db), нам придется создать отдельный контейнер для каждой переменной.
$ for n in PK KEK db > do > sbvarsign --key test-key.rsa --cert test-cert.pem \ > --output test-cert.der.siglist.$n.signed \ > $n test-cert.der.siglist > done
Кроме того, все известные сертификаты от разработчиков linux (Canonical, Fedora, AltLinux, openSUSE и др.) - тоже само-подписанные, их вы можете найти в на сайте проекта rEFInd или в проекте UEFI-Boot на github
Создание хранилища ключей
Далее нам потребуется создать хранилище ключей в стандартном месте, где утилита sbkeysync будет их искать.
$ sudo mkdir -p /etc/secureboot/keys/{PK,KEK,db,dbx} $ sudo cp *.PK.signed /etc/secureboot/keys/PK/ $ sudo cp *.KEK.signed /etc/secureboot/keys/KEK/ $ sudo cp *.db.signed /etc/secureboot/keys/db/
На самом деле вы можете создать хранилище где угодно и указать утилите sbkeysync где оно находится в значении ключа –keystore.
Загрузка ключей
Через утилиту прошивки
Загрузка ключей в UEFI может быть выполнена из утилиты настройки вашей материнской платы. Там нужно будет найти раздел (обычно Security) где задаются параметры SecureBoot. Возможно потребуется явно разрешить работу с ключами - выбрать режим управления ключами custom или как либо еще.
Попав в окно утилиты по управлению ключами, первым делом сохраните (на всякий случай) фабричные ключи15). После этого удалите все фабричные ключи, и по одному добавляйте ключи из вашего хранилища ключей (скорее всего, его придется перенести на ESP раздел, т.к. только этот раздел доступен для UEFI).
PK ключ желательно записывать последним (почему? - детально описано в финальной части раздела "Ключи системы SecureBoot").
Следует также отметить, что формат, в котором прошивка умеет загружать ключи может разниться в разных прошивках UEFI. Например прошивка AMI из недавно купленного мини-PC может взять сертификат и из подготовленного контейнера, и непосредственно из файла .pem. Т.о. вся эта возня со специальными контейнерами, в этом случае, вовсе не нужна: один и тот же само-подписанный сертификат можно загрузить и в PK, и в KEK, и в db.
Используя sbkeysync
Если UEFI находится в Setup режиме, то ключи можно загрузить и из ОС, используя утилиту sbkeysync. Но для начала воспользуйтесь опцией –dry-run, что бы убедится, что у вас все верно настроено и готово к этому важному процессу:
$ sbkeysync --verbose --pk --dry-run Filesystem keystore: /etc/secureboot/keys/db/test-cert.der.siglist.db.signed [2116 bytes] /etc/secureboot/keys/KEK/test-cert.der.siglist.KEK.signed [2116 bytes] /etc/secureboot/keys/PK/test-cert.der.siglist.PK.signed [2116 bytes] firmware keys: PK: KEK: db: dbx: filesystem keys: PK: /CN=test-key from /etc/secureboot/keys/PK/test-cert.der.siglist.PK.signed KEK: /CN=test-key from /etc/secureboot/keys/KEK/test-cert.der.siglist.KEK.signed db: /CN=test-key from /etc/secureboot/keys/db/test-cert.der.siglist.db.signed dbx: New keys in filesystem: /etc/secureboot/keys/db/test-cert.der.siglist.db.signed /etc/secureboot/keys/KEK/test-cert.der.siglist.KEK.signed /etc/secureboot/keys/PK/test-cert.der.siglist.PK.signed
Вывод покажет списки ключей найденных в базе данных UEFI, ключей найденных в хранилище ключей и список синхронизации (какой ключ куда будет загружен).
Если все выглядит правильно, удалите –dry-run параметр из команды для фактического обновления ключей в UEFI базе данных.
Подписывание загрузчика
Т.к. мы активировали SecureBoot, то теперь нам нужно подписать наш загрузчик что бы он мог быть загружен UEFI в этом режиме. В нашем примере мы подпишем код загрузчика GRUB2.
$ sbsign --key test-key.rsa --cert test-cert.pem \ --output grubx64.efi /boot/efi/EFI/ubuntu/grubx64.efi $ sudo cp /boot/efi/EFI/ubuntu/grubx64.efi{,.bak} $ sudo cp grubx64.efi /boot/efi/EFI/ubuntu/
Теперь, можно скрестить пальцы, плюнуть три раза через левое плечо и попробовать перегрузиться
Возврат в режим Setup
Переключаться обратно в режим Setup лучше всего из прошивки UEFI, однако теоретически это возможно и внутри OS. Т.к. мы имеем секретный ключ от нашего PK, мы можем попробовать вернуть UEFI из режима User в режим Setup. Для этого потребуется подготовить пустой ключ и записать его в переменную PK:
$ : > empty $ sbvarsign --key test-key.rsa --cert test-cert.pem \ --attrs NON_VOLATILE,BOOTSERVICE_ACCESS,RUNTIME_ACCESS \ --include-attrs --output empty.PK.signed PK empty $ sudo dd bs=4k if=empty.PK.signed \ of=/sys/firmware/efi/vars/PK-8be4df61-93ca-11d2-aa0d-00e098032b8c
Хотя лучше убедиться, что вернуть UEFI в режим Setup можно из самой прошивки (утилиты настройки) перед тем как прописывать PK.
Как Ubuntu загружается в режиме Secure Boot
Как уже было сказано выше, сертификаты с ключами для загрузки в режиме Secure Boot записываются производителем оборудования (довольно подробно о ключах UEFI (англ.)). И, как правило, набор сертификатов состоит из: сертификата производителя, KEK и db ключей от Microsoft (конечно же). Крайне редко, но все же попадаются такие машины, у которых в db есть и ключ от Canonical и/или RedHad. Как же на машине c ключами только от Microsoft загрузить Ubuntu в режиме SecureBoot?
Решение было найдено: Microsoft согласился (не без активности со стороны Canonical) подписать своим ключом простенький загрузчик от Red Hat - shim (есть еще мини-загрузчик - PRELoader, о его подписании ключом Microsoft похлопотал фонд FSF).
Shim, в свою очередь, содержит (в MOK) UEFI сертификат от Canonical и проверяет подпись GRUB2 (версия которого, распространяемая через репозитории Ubuntu, подписана ключем Canonical). А GRUB2 проверяет подпись ядра (из пакета linux-signed-generic, которое подписано Canonical).
Введение дополнительного звена в виде shim продиктовано тем, что GRUB довольно часто обновляется и каждый раз после обновления его надо подписывать. Само собой, его гораздо проще подписать собственным ключом Canonical нежели каждый раз снова договариваться с Microsoft.
Если вы не хотите оставлять сертификаты Microsoft и производителя на своей машине16), то из утилиты настройки вашей материнской платы или с помощью утилит efitools можно стереть сертификаты прописанные производителем, и записать в UEFI (db) ключ от Canonical, тогда уже Grub (так же как и само ядро Linux) сможет загружаться в режиме Secure Boot, и shim (со своим MOK) - не нужен.
Если вам не хочется даже сертификат от Canonical оставлять в своем компьютере17), то вы можете создать свои собственные ключи и сертификаты (как описано выше), подписать grub или само ядро Linux (утилитой sbsign из пакета sbsigntool) и записать ключи в базу данных ключей EFI (утилитами efitools). Подробно этот процесс описан выше и тут (англ.).
Проверяйте все ваши настройки, проверяйте, что в UEFI записаны именно те ключи, что вы хотели и не забудьте проверить правильность подписей.
Хорошая идея: проделать все сначала на виртуальной машине.
- grub (вариант grub-efi) он используется для загрузки в UEFI режиме.
EFS раздел (необходимый для загрузки в UEFI режиме) прописан и в таблицу разделов в MBR, и в каталог разделов iso9660 формата. По UEFI стандарту загрузчик по умолчанию должен находится в EFS разделе по пути: EFI\BOOT\BOOTx64.EFI
Такой «винегрет» позволяет грузиться с такого образа в следующих режимах:
- в режиме BIOS/SCM
- как с CD/DVD (код isolinux берется из загрузочной записи ISO9660 стандарта)
- как с HDD/USB-Flash (код isolinux берется из MBR)
- в режиме UEFI
- как с CD/DVD (EFS раздел находится в каталоге записей ISO9660, и оттуда запускается EFI\BOOT\BOOTx64.EFI)
- как с HDD/USB-Flash (EFS раздел находится в таблице разделов MBR, и оттуда запускается EFI\BOOT\BOOTx64.EFI)
Кстати в EFI\BOOT\BOOTx64.EFI (EFI\BOOT\BOOTia32.EFI для 32-х битных платформ) лежит не сам GRUB, а SHIM. Сам grubx64.efi/grubia32.efi (начальная стадия grub-efi) лежит рядом (в EFI\BOOT\) и его запускает SHIM. SHIM имеет валидную подпись ключом от Microsoft для загрузки в режиме SecureBoot, что позволяет загрузиться из образа на большинстве компьютеров.
Такой образ легко записать на флешку простой командой:
sudo cp <путь и имя образа UBUNTU>.iso /dev/sd<буква девайса под которой в компьютере видна флешка>
Второй параметр - именно девайс, а не раздел. Посмотреть диски и разделы можно в выводе команды
sudo fdisk -l
Образ Ubuntu копируется начиная с первого сектора устройства, MBR и таблица разделов ISO9660 стандарта попадают в необходимые для их правильной работы места, что позволяет с загрузиться с такой флешки как c USB-СD/DVD и как с USB-HDD/USB-Flash. Причем в обоих вариантах доступна загрузка как в UEFI, так и в BIOS/CSM режимах.
Другие интересные возможности UEFI
UEFI Shell
UEFI shell часто уже установлен в разделе ESP или прямо в прошивке UEFI. Некоторые UEFI прошивки умеют загружать командный интерпретатор UEFI прямо из консоли настройки UEFI (BIOS).
Если вы ставили Ubuntu на чистый диск, а в прошивке нет встроенного UEFI shell, то его можно доставить руками. Сам бинарный файл легко находится через любой поисковик. Вам нужно будет только скопировать его в корень ESP раздела с именем shellx64.efi (для 32-х битных платформ: shellx32.efi). Само собой копировать надо через sudo (т.е. с правами root).
- Либо отключать для его загрузки режим SecureBoot
- Либо подписать бинарный код UEFI Shell парным секретным ключем от одного из ключей записанных в переменной db базы данных ключей UEFI.
Если из настроек UEFI нет возможности запустить UEFI shell, то можно его прописать как вариант загрузки (как вы помните UEFI поддерживает мульти-загрузку). Для этого воспользуемся утилитой efibootmg:
# efibootmgr -c -l \\shellx64.efi -L UEFIshell
После этой команды у вас появится новый пункт меню загрузки UEFI, и это новый пункт станет первым по приоритету. Если такой приоритет загрузки вас не устраивает, то поменяйте его с помощью опции «-o» утилиты efibootmgr.
Справочник по командам UEFI shell встроенный - команда help. Если вы хотите останавливать вывод постранично (некий аналог more) то используйте в командах ключ -b. Кроме того поддерживается история вывода на 3 страницы которые можно просмотреть используя кнопки PageUp и PageDown.
Команда map покажет известные UEFI диски и разделы. Обычно диск fs0: - это и есть раздел ESP. Для того, что бы просмотреть содержимое каталогов ESP раздела (ls) выполните переход на ESP раздел - введите в строке приглашения fs0: - это очень похоже на dos команды типа а: с: (если кто еще помнит такое).
Разделитель в путях тоже в стиле DOS - обратный слеш (\).
EFI shell имеет довольно обширный набор команд, все их тут описывать смысла нет - если не достаточно встроенной подсказки, то есть краткие руководства в Internet. Наиболее полное писание UEFI Shell и его команд я нашел только в спецификации UEFI Shell 2.0 на сайте UEFI.org.
Загрузка ядра Linux непосредственно из UEFI
Если вы взгляните в файловом менеджере на ядро (/boot/vmlinuz*) то вы можете немало удивиться, заметив что тип будет указан как «DOS/Windows executable» - не удивляйтесь. Все последние ядра в Ubuntu собираются с опцией UEFISTUB (поддержка загрузки в режиме UEFI). А это добавляет заголовок аналогичный ДОСовскому .exe (именно так должны собираться все UEFI приложения). Т.е. само ядро можно загрузить как UEFI приложение. Для этого нужно разобраться с двумя основными вопросами:
1. Как правильно передать ядру параметры? Т.е. указать на корневую файловую систему, образ initrd, и указать опции загрузки ядра.
2. Как обеспечить UEFI доступ к самому ядру (и initrd)?
По первому пункту все достаточно просто: параметры, которые нужно передать ядру для загрузки можно подсмотреть в /boot/grub/grub.cfg, в команде загрузки linux (там стандартно передаются указание на корневой раздел и опции типа «ro», «quiet» и «splash»). Дополнительно ядру надо будет сообщить, где найти initrd (в ядрах версии 3.3 и выше это можно сделать через параметр intrd). В итоге, та команда, которую должен выполнить UEFI будет выглядеть примерно так:
vmlinuz.efi root=UUID=0160863a-1468-422b-8bbb-f80e98e3600d ro quiet splash initrd=initrd
В этом примере ядро и initrd лежат непосредственно в корне ESP раздела. Ядро переименовано в «vmlinuz.efi», а соответствующий ему образ рамдиска начальной инициализации ядра в «initrd». В команде указан UUID (моего корня, вам нужно прописать свой UUID) как путь к корневому разделу, но можно написать и что-то типа root=/dev/sda2 (UUID все же - лучше).
- Использовать подписанное Canonical ядро (пакет linux-signed-generic из репозитоиев Ubuntu). В этом случае сертификат от Canonical должен быть помещен в переменную db базы данных ключей UEFI.
- Подписывать ядро своим собственным ключем, сертификат (с публичной частью ключа) которого размещен переменной db базы данных ключей UEFI.
В первом варианте - для загрузки из UEFI нужно использовать подписанный вариант ядра (vmlinuz*.efi.signed).
Во втором варианте нужно организовать (это можно даже автоматизировать) подписывание каждого нового ядра, которое приходит с обновлениями системы.
Некоторые сложности может вызвать указание пути к initrd. Ядра выше 3.3 вообще не различают прямые и обратные слеши в параметре initrd, но нужно указать такой путь, что бы ядро смогло найти initrd при загрузки в окружение UEFI.
В целом, нам необходимо организовать доступ из UEFI и к ядру, и к initrd (напомню: UEFI имеет доступ только к ESP разделу и умеет работать только с файловой системой FAT32). Это может быть решено одним из трех вариантов:
Вариант 1: Загрузить ядро и intrd непосредственно из корневого раздела или раздела boot
Для этого нужно загрузить в UEFI драйвер для поддержки той файловой системы, в которую отформатирован ваш корень или /boot. (UEFI «из коробки» знает только FAT32, драйвера для чтения других FS можно найти например тут).
Вот какие команды надо выполнить в UEFI Shell для загрузки ядра прямо из корня, находящегося на разделе с EXT4 (boot не вынесен в отдельный раздел).
- загрузить драйвер поддержки ext2-3-4 (в нашем примере он был предварительно размещен на ESP разделе в каталоге EFI/drivers)
load fs0:\EFI\drivers\ext2_x64.efi
- смонтировать корневую FS (эта команда пытается все доступные устройства смапить всеми доступными драйверами)
map -r
- перейти (изменить текущий путь) в новую FS
fs1:
- запустить ядро с параметрами
vmlinuz root=UUID=0160863a-1468-422b-8bbb-f80e98e3600d ro queit initrd=initrd.img
В этом примере я воспользовался тем, что в корне корневой FS автоматически создаются линки на самую свежую версию установленного ядра и его initrd. Перейдя (сменив текущий путь) в корневую ФС мне уже не нужно мудрить с указанием полного пути к ядру и initrd - они находятся в текущем каталоге (из которого и запускается ядро).
Все эти действия можно записать в скрипт (для скриптов UEFI Shell принято расширение .nsh), и запускать ОС вызвав его. К сожалению, непосредственно скрипт файл нельзя указать как исполняемый файл в пункте меню загрузки UEFI. Согласно спецификации UEFI Shell может исполнить скрипт, имя которого передано ему как параметр, но мне это сделать не удалось. UEFI Shell может автоматом исполнить (после паузы) скрипт startup.nsh, находящийся в корне ESP раздела (можно записать эту последовательность команд туда).
Но можно пойти другим путем. Спецификация UEFI поддерживает автоматическую загрузку драйверов при загрузке системы. А это собственно и есть то, что нам нужно для того, что бы получить доступ к файловой системе с ядром без скрипта. Однако и тут есть один подводный камень.
Дело в том, что просто загрузить драйвер - недостаточно, нужно еще вызвать процедуру ремаппинга устройств (т.е. выполнить ту самую команду map -r). При ремапинге каждый драйвер пытается «прицепиться» ко всем доступным устройствам, т.е. наш драйвер EXT2-4 сделает доступными все разделы на всех дисках с файловыми системами EXT2-4.
Добавить автоматическую загрузку драйвера можно командой
sudo efibootmgr -crl "EFI\drivers\ext2_x64.efi" -L "EXT2-4 Driver"
То же самое можно сделать командой bcfg из UEFI-Shell. Следующая команда добавит пункт загрузки Driver0000 (номер задает первый аргумент команды add), который будет загружать драйвер из файла EFI\drivers\ext2_x64.efi (с ESP раздела). Драйвер получит описание «EXT2-4 Driver»:
bcfg driver add 0 EFI\drivers\ext2_x64.efi "EXT2-4 Driver"
Все замечательно и этот драйвер, при каждом запуске системы, будет загружаться во время инициализации UEFI автоматически, но ремапинга не будет. Для того, чтобы после загрузки драйвера инициировать ремапинг нужно в опции загрузки драйвера указать специальный атрибут LOAD_OPTION_FORCE_RECONNECT, однако ни одной командой UEFI-Shell или опцией efibootmgr этот атрибут не установить (по крайней мере мне не удалось найти такой команды). Перелопатив спецификацию UEFI можно понять, что нужно то всего прописать значение 3 вместо 1 в первом 32-битном слове UEFI переменной отвечающей за загрузку драйвера (той самой Driver0000, что мы создали командой bcfg или efibootmgr). Сделать это изменение можно любым HEX редактором (из загруженной системы), запущенным с правами рута, в котором на редактирование открывается файл /sys/firmware/efi/efivars/Driver0000-8be4df61-93ca-11d2-aa0d-00e098032b8c (это маппинг в файловую систему sys переменной UEFI). В редакторе нужно 5-й байт от начала поменять с значения 01 на 03 и сохранить файл.
Хорошим тоном будет вернуть защиту после редактирования командой chattr +i
После нашей хакерской атаки на UEFI можно перегрузиться в UEFI-Shell и там прямо при запуске увидеть, что все EXT4 разделы уже отмаплены в FS<n> «диски», а значит на них можно сослаться при задании команды загрузки для опции загрузки ОС. В моем примере EXT4 раздел с корневой FS отмапился в FS2. А это позволяет задать в опции загрузки (используя команду bcfg из UEFI-Shell или efibootmgr из загруженной системы) команду такого вида:
FS2:\vmlinuz root=UUID=0160863a-1468-422b-8bbb-f80e98e3600d ro queit initrd=FS2:\initrd.img
Если вы все сделали правильно и не забыли подписать драйвер (если у вас включен SecureBoot), то поле перезагрузки система успешно должна загрузится прямо с вашего корневого раздела.
В принципе, несмотря на некоторую сложность этого метода в реализации, это САМЫЙ ПРАВИЛЬНЫЙ вариант загрузки ядра Linux из UEFI. Дополнительные удобства создают постоянно обновляемые ссылки на последнее и предыдущее ядра и их initrd в корне файловой системы Linux. На них можно однократно создать пункты загрузки UEFI и не нужно никаких обновлений после установки/удаления ядер и обновления initrd. Также однократно надо скопировать в EFS раздел драйвер для ФС корня и однократно настроить его загрузку.
Вариант 2: Скопировать ядро и intrd в ESP раздел
Преимущество в том, что не нужно мудрить с организацией поддержки другой FS. Однако, каждый раз при обновлении ядра или initrd их нужно вновь копировать в ESP раздел. Решить задачу автоматизации этого процесса можно одним из методов описанных в этой статье (англ.) или подобно тому как это реализовано в проекте UEFI Boot.
Вы можете выполнить команду запуска ядра из UEFI Shell, или записать ее в командный файл и запускать его из UEFI Shell, или, воспользовавшись утилитой efibootmgr, записать эту команду как пункт меню загрузки UEFI:
# efibootmgr -c -l vmlinuz.efi -u "root=UUID=0160863a-1468-422b-8bbb-f80e98e3600d ro quiet initrd=initrd" -L LinuxKernel
Эта команда добавит пункт загрузки LinuxKernel и сделает его первым в списке приоритета загрузки.
Вариант 3: Смонтировать ESP раздел как /boot
Преимущества этого решения в том, что новые ядра и initrd будут находится (устанавливаться и обновляться) прямо на ESP раздел (который станет одновременно boot разделом). Правда, неприятность в том, что название файла с ядром и initrd есть версия, и для каждого нового ядра нужно заново прописывать команду в пункт загрузки UEFI. Можно, конечно, переименовать в короткие имена (которые однократно будут записаны в пункты загрузки UEFI), однако переименование приводит нас к ситуации близкой к предыдущему случаю - initrd будет при обновлении снова получать номер версии и его каждый раз придется переименовывать. Воспользоваться автоматически создаваемыми ссылками в корневом разделе - не получится (они останутся в файловой сиcтеме корневого раздела, к которому нет доступа без доп. драйверов), а создать ссылки на FAT разделе - невозможно (этого FAT просто не умеет от рождения).
Команда для записи пункта загрузки UEFI через утилиту efibootmgr не отличается принципиально от той, что указана для способа с копированием ядра в ESP раздел:
# efibootmgr -c -l vmlinuz-3.12.0-22-generic -u "root=UUID=0160863a-1468-422b-8bbb-f80e98e3600d ro quiet initrd=initrd.img-3.12.0-22-generic" -L Ubuntu-3.12.0-22-generic
Более детальная проработка этого варианта описана в отдельной статье UEFI Boot. Там реализовано автоматическое обновление пунктов загрузки UEFI при установке, обновлении и удалении ядер.
Устранение из процесса загрузки загрузчиков (оригинально это цепочка из двух: shim + GRUB) заметно (но не так что бы очень значительно) сокращает время загрузки ОС. Вот как это выглядит в цифрах на примере одного mini-pc (I5 5257U, 8Gb RAM, SSD): утилита systemd-analyze сообщает, что на стадию работы загрузчиков в случае цепочки UEFI-Shim-GRUB-Kernel требуется чуть меньше секунды - 967ms, а на прямую загрузку UEFI-Kernel - 153ms. При полной (холодной) загрузке системы за ~14 секунд выигрыш составляет порядка 6%.
Полезные утилиты для UEFI
В стандартных репозиториях Ubuntu есть несколько полезных пакетов с утилитами для работы с настройками UEFI.
- efibootmgr - утилита, которой можно менять настройки загрузки UEFI, в частности: настраивать приоритет загрузки, создавать/изменять/удалять загрузочные записи UEFI.
- efivar - простая утилита для работы с переменными UEFI.
- efitool - набор утилит и efi-приложений для работы с ключами/сертификатами, используемыми при загрузке в режиме Secure Boot.
- sbsigntool - утилиты для подписывания и проверки подписей UEFI-приложений, для организации загрузки в Secure Boot режиме.
У всех этих утилит есть вполне толковые man-руководства и есть примеры использованию в Интернете, поэтому я не стану останавливаться на деталях использования этих утилит.
:) Патч Бармина живе всех живых
Ну и напоследок, последняя «веселая» история связанная с бородатым (по некоторым сведениям 1996 года рождения) патчем Бармина.
В конце января 2016 некий арчевод решил посмотреть - как работает этот известный патч. И он старательно вписал в команду даже специальный ключ, без которого этот патч уже не запускается… Ну… и получил кирпич из своего MCI нетбука - он даже после сброса не включился!
Как нетрудно догадаться корень беды - в кривой прошивке UEFI. Патч вытер вместе с корнем еще и переменные UEFI в NVRAM, которые монтируются в /sys/firmware/efi/efivars/, но принципиально это не могло быть проблемой, потому как стандартом UEFI предусматривается нарушение целостности данных в NVRAM: при обнаружении такой ситуации прошивка ОБЯЗАНА осуществить инициализацию NVRAM до состояния настроек по умолчанию/фабричных (Factory Default).
Но вот в MCI решили забить на проверку целостности NVRAM, и незадачливый арчевод потащил свой нетбук кирпич в сервис.
После этой новости состоялся наезд на разработчиков SystemD (ну на них многие любят наезжать и ругаться, а те собственно сами довольно часто дают повод для вполне обоснованной и справедливой ругани в свой адрес): мол какого лешего, SystemD монтирует эти переменные с возможностью записи!? Давайте типа быстро переделайте на монтирование в режиме только-чтение. На что был дан резонный ответ - доступ на запись нужен утилитам, и разрешена запись только руту, который при желании премонтирует эти переменные в режиме записи. Так что, это не защитит от идиотов дураков «умников», которые экспериментируют с патчем Бармина.
Правда позже некоторые контрмеры все-таки были предприняты: теперь все UEFI переменные монтируются со специальным атрибутом, который запрещает запись и удаление этих файлов даже руту. Однако root в состоянии снять эти флаги (сhattr -i <имя файла>). Так что теперь для повторения судьбы арчевода с ноутбуком MCI нужно не только специальный ключ в команде rm -rf задавать, но еще и предварительно снять защиту с перемнных UEFI.
Самое же примечательное в этой ситуации ИМХО в том, что 20 лет назад отпущенная шутка, до сих пор стреляет, да еще с невиданной доселе мощью.
Ссылки
Обсуждение на форуме
Википедия о UEFI
Википедия о GPT
Очень подробная Wiki по UEFI (к сожалению не полностью переведенная на русский язык)
Очень толковая статья о SecureBoot и методах борьбы с ним.